Data Sheet, Version 1.0, June 2005

BGA615L7

Silicon Germanium GPS Low Noise Amplifier

Automotive and Industrial Silicon Discretes

Never stop thinking.

Edition 2005-06-14

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München

© Infineon Technologies AG 2005 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may

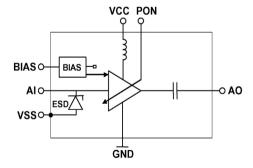
BGA615L7 Data Sheet Revision History: June 2005

Previous Version:

11011000	
Page	Subjects (major changes since last revision)

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com

Silicon Germanium GPS Low Noise Amplifier

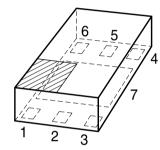

BGA615L7

Features

- High Gain: 18 dB
- Low Noise Figure: 0.9 dB
- Power off function
- Operating frequency 1575 MHz
- Supply Voltage: 2.4 V to 3.2 V
- Supply Current: 5.6 mA (ON) and < 3 µA (OFF)
- Tiny P-TSLP-7-1 leadless package
- B7HF Silicon Germanium technology
- RF output internally matched to 50 Ω
- · Low external component count
- 1 kV HBM ESD protection (including AI-pin)

Application:

• 1575 MHz GPS



Description

The BGA615L7 is a front-end low noise amplifier for Global Positioning Systems (GPS) applications. The LNA provides 18 dB gain, 0.9 dB noise figure and high linearity performance, allowing it to be used as a first-stage LNA. Current consumption is as low as 5.6 mA. The BGA615L7 is based upon Infineon Technologies' B7HF Silicon Germanium technology. It operates over a 2.4 V to 3.2 V supply range.

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Package	Marking	Chip
BGA615L7	P-TSLP-7-1	BS	T1595

Pin Definition and Function

Pin No.	Symbol	Function
1	AI	LNA input
2	BIAS	DC Bias
3	GND	RF ground
4	PON	Power On control
5	VCC	Supply control
6	AO	LNA output
7	VSS	Ground

Maximum Ratings

Parameter ¹⁾	Symbol	Limit value	Unit
Voltage at pin VCC	V _{cc}	-0.3 3.6	V
Voltage at pin Al	V _{AI}	-0.3 0.9	V
Voltage at pin BIAS	V _{BIAS}	-0.3 0.9	V
Voltage at pin AO	V _{AO}	-0.3 V _{CC} +0.3	V
Voltage at pin PON	V _{PON}	-0.3 V _{CC} +0.3	V
Voltage at pin VSS	V _{SS}	-0.3 0.3	V
Current into pin VCC	I _{vcc}	10	mA
RF input power	P _{IN}	10	dBm
Total power dissipation	P _{tot}	36	mW
Junction temperature	Tj	150	°C
Ambient temperature range	T _A	-30 +85	°C
Storage temperature range	T _{STG}	-65 +150	°C
ESD capability all pins (HBM: JESD22A-114)	V _{ESD}	1000	V

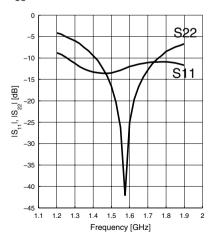
¹⁾ All Voltages refer to GND-Node

Electrical Characteristics

 $T_A=25^{\circ}$ C, $V_{CC}=2.8$ V, $V_{PON,ON}=2.8$ V, $V_{PON,OFF}=0$ V, frequency=1575MHz, measured on BGA615L7 application board including PCB losses (unless noted otherwise)

Parameter	Symbol	min.	typ.	max.	Unit
Supply voltage	V _{cc}	2.4	2.8	3.2	V
Supply Current ON-Mode OFF-Mode	I _{cc}	-	5.6 0.2	- 3	mΑ μΑ
Gain Switch Control Voltage ON-Mode OFF-Mode	V _{pon}	1.5 0	-	3.2 0.5	v
Gain Switch Control Current ON-Mode OFF-Mode	I _{pon}	-	1.5 0	3 1	μA μA
Insertion power gain (High-Gain Mode)	S ₂₁ ²	-	18	-	dB
Noise figure $(Zs = 50\Omega)^{2}$	NF	-	0.9	-	dB
Input Return Loss	RL _{in}	-	13	-	dB
Output Return Loss	RL _{out}	-	>15	-	dB
Reverse isolation	1/ S ₁₂ ²	-	35	-	dB
Power gain settling time (within 1dB of the final gain) OFF- to ON-Mode ON- to OFF-Mode	t _s	-	2 20	-	μs
Inband input 3rd order intercept point f1= 1575MHz, f2= f1 +/-1MHz	IIP ₃	-	-1	-	dBm
Inband Input 1dB compression point	IP _{1dB}	-	-10	-	dBm
Out of band Input 1dB compression point (806MHz - 928MHz)	IP _{1dB,900M}	-	1	-	dBm
Out of band Input 1dB compression point (1612MHz - 1710MHz)	IP _{1dB,1650M}	-	-9	-	dBm
Out of band Input 1dB compression point (1710MHz - 1785MHz, 1850MHz - 1909MHz)	IP _{1dB,1900M}	-	-8	-	dBm
Out of band Input 1dB compression point (1909MHz - 2500MHz)	IP _{1dB,2000M}	-	-6	-	dBm
Stability (20 MHz-10 GHz)	k	-	>1.5	-	

²⁾ PCB losses subtracted


Typical Measurement Results ON Mode; T_A = 25°C

 $\begin{array}{ll} \textbf{Gain} & |S_{21}| = f(f) \\ V_{CC} = 2.8 V \end{array}$ 20 19 18 17 .30°C 16 14 ୬b°d 13 12 85°C 11 10 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Frequency [GHz] **Reverse Isolation** $|S_{12}| = f(f)$ $V_{CC} = 2.8V$ -30 -32 -34 -36 -38 IS₁₂I [dB] -40 -42 -44 -46 -48

Frequency [GHz]

Noise Figure³⁾ NF = f(f)

```
Matching |S_{11}|, |S_{22}| = f(f)
V_{CC} = 2.8V
```


1.4 1.5 1.6 1.7

Frequency [GHz]

1.8 1.9

2

-50

1.1 1.2 1.3 2

 $V_{\rm CC} = 2.8V$ 1.5 1.4 1.3 1.2 1.1 NF [dB] 1 0.9 0.8 0.7 0.6 0.5 1.3 1.6 1.2 1.4 1.5 1.7 1.8 1.9 2 1.1

20 40 60 80 100

T_₄ [°C]

40 60 80 100

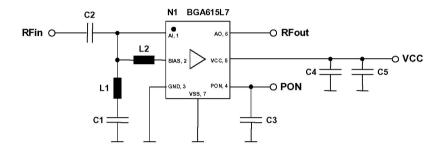
T₄ [°C]

Typical Measurement Results ON Mode over Temperature

Power Gain $|S_{21}| = f(T_A)$ Noise Figure⁴⁾ NF = $f(T_{\Delta})$ $V_{CC} = 2.8V$ $V_{CC} = 2.8V$ 20 1.5 19.5 1.4 19 1.3 18.5 1.2 18 1.1 IS₂₁I [dB] NF [dB] 17.5 1 17 0.9 16.5 0.8 16 0.7 15.5 0.6 15 0.5 -20 60 -20 -40 0 20 40 80 100 -40 0 T_₄ [°C] Supply current $I_{CC} = f(T_A)$ Intercept Point 3rd O. IIP3 = $f(T_{\Delta})$ $V_{CC} = 2.8V$ $V_{CC} = 2.8V$ 6.5 5 6.3 2.5 6.1 5.9 0 5.7 IIP3 [dBm] [Fm] ²⁰ -2.5 5.3 -5 5.1 4.9 -7.5 4.7 4.5 -10 -40 -20 0 20 40 60 80 100 -40 -20 0 20 $T_{A}[^{\circ}C]$

4) PCB losses subtracted

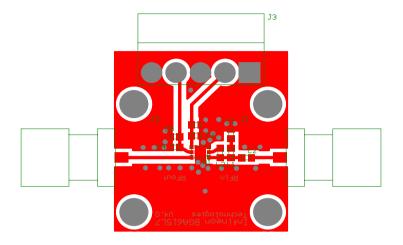
Data Sheet


Typical Measurement Results ON Mode over Supply Voltage

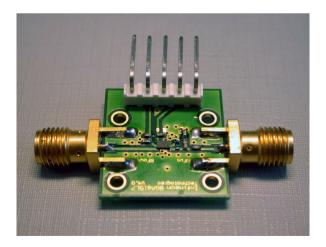
Noise Figure⁵⁾ NF = $f(V_{CC})$ **Power Gain** $|S_{21}| = f(V_{CC})$ $T_{\Delta} = 25^{\circ}C$ $T_A = 25^{\circ}C$ 20 1.5 19.5 1.4 19 1.3 18.5 1.2 18 1.1 IS₂₁I [dB] NF [dB] 17.5 1 17 0.9 16.5 0.8 16 0.7 15.5 0.6 15 0.5 2.4 2.6 з 2.4 2.6 3.2 2.2 2.8 3.2 3.4 2.2 2.8 з 3.4 V_{cc} [V] V_{cc} [V] Supply current $I_{CC} = f(V_{CC})$ Intercept Point 3rd O. IIP3 = $f(V_{CC})$ $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ 6.5 5 6.3 2.5 6.1 5.9 0 5.7 IIP3 [dBm] [Fm] ²⁰ -2.5 5.3 -5 5.1 4.9 -7.5 4.7 -10 └ 2.2 4.5 L 2.2 2.4 2.6 2.8 3 3.2 3.4 2.4 2.6 2.8 з 3.2 3.4 V_{cc} [V] $V_{cc}[V]$

5) PCB losses subtracted

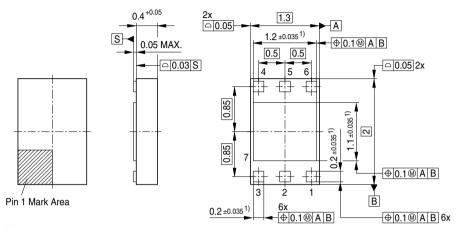
PCB Board Configuration



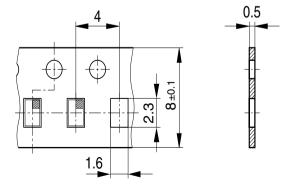
Bill of Materials


Name	Value	Package	Manufacturer	Function
C1	10 nF	0402	various	LF trap
C2	5 pF	0402	various	DC block
C3	10 pF	0402	various	control voltage filtering optional
C4	100 pF	0402	various	supply filtering optional
C5	2.2 nF	0402	various	supply filtering
L1	3.3 nH	0402	various	LF trap & input matching
L2	100 nH	0402	various	biasing
N1	BGA615L7	P-TSLP-7-1	Infineon	SiGe LNA

Application Board, Top View



Photograph of Application Board



Package Outline

¹⁾ Dimension applies to plated terminals

Tape & Reel Outline

